
Isolation and Web Services Transactions

David Paul, Frans Henskens, Michael Hannaford
School of Electrical Engineering and Computer Science, University of Newcastle, Australia

David.Paul@newcastle.edu.au, Frans.Henskens@newcastle.edu.au,
Michael.Hannaford@newcastle.edu.au

Abstract

The traditional ACID properties for transactions
are typically ignored in the Web Services environment
to ensure an acceptable level of service. However, this
common lack of isolation can cause difficulties. We
look at ways to reduce these problems but still
maintain an acceptable level of service.

1. Introduction

Web Services transactions combine multiple
services, possibly located on heterogeneous systems,
into a single logical unit. They can thus be thought of
as multidatabase transactions[1]. Typically, the
traditional ACID (atomicity, consistency, isolation, and
durability) properties of database transactions are
relaxed in such systems, as the necessary locks and
restrictions would severely reduce the usefulness of the
system. Atomicity is often replaced with semantic
atomicity[2], which simply requires that any
transaction either succeeds fully or converts the system
to a state such that the transaction may not have run
(typically achieved through compensating transactions
that logically undo any actions a failed transaction has
already completed). Isolation, on the other hand, is
typically ignored.

Isolation ensures that transactions do not get an
inconsistent view of data because of concurrently
running transactions. In the strictest sense, isolation is
only guaranteed if concurrent transactions are
serializable, meaning that there is some order in which
they could be run serially that would achieve the same
result as running them concurrently. Often, isolation is
achieved by ensuring that transactions cannot access
data being written by other transactions. This is
typically realized by placing locks that stop other
transactions from having access to particular data until
the original transaction has finished with it. While this
works well for single systems, for Web Services

transactions only calls to the individual services are
isolated. Thus, transactions that use multiple services
may not be serializable. Further, using locks would not
be acceptable in this environment, as Web Services
transactions can run for long periods of time (perhaps
taking weeks or months to complete), and blocking
access to services until a transaction had finished
would result in an unacceptable degradation of service.

However, there are some problems that arise
because global isolation is not enforced. When a
transaction has finished working with one resource,
any later transactions can see the changes made. This is
fine if the original transaction completes successfully,
but if it later fails, and then undoes the changes made
on that resource, the other transactions that used that
service potentially have an inconsistent view of the
state of that resource. Thus, transactions that should
have been able to succeed may fail, or a transaction
may unnecessarily follow a different path because of
the inconsistent view of the data.

We look at ways that these problems can be
overcome, or at least minimized, allowing an
acceptable level of service while improving the
handling of isolation of Web Services transactions.

2. Motivating Examples

Consider a situation where two people, A and B,
wish to travel to a small town. The town is serviced by
only one airline, and has only one hotel. Thus, both A
and B need a flight from the airline and a room in the
hotel. A also requires a rental car, though B does not. If
A books the last seat on the flight, then, even if B can
successfully book accommodation, B’s transaction
would fail. If A is then unable to hire a car, A would
cancel the booking, so B should be able to book
instead. However, unless B explicitly resends the
request, B would not be aware that the booking would
now succeed.

A similar situation may occur if the town was
serviced by two airlines, X and Y. If B prefers to travel

Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies

0-7695-3049-4/07 $25.00 © 2007 IEEE
DOI 10.1109/.29

181

Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies

0-7695-3049-4/07 $25.00 © 2007 IEEE
DOI 10.1109/.29

181

with X, but is willing to travel with Y if necessary, and
A gets the last seat on the flight from X, then B must
book with Y. If A later cancels, then it should be
possible for B to cancel the flight with Y and instead
book with the preferred airline X. However, B’s
transaction has already succeeded, booking a flight
with Y. Thus, B would be forced to travel with Y
unnecessarily, even though a seat on X would be
available.

3. Potential Solutions

To stop the first situation, where B cannot book a
flight, it would be possible for B to resend the request
at a later time. In fact, B could keep a hold on the
initial successful request for accommodation and only
resend the flight request. However, B must decide how
long to wait between requests. If too short a time is
chosen, then the repeated requests could put too much
strain on the service provider. If, on the other hand, B
does not request often enough, a third person may book
the flight after A has cancelled their booking, but
before B has resent their request.

Another approach is to use optimistic concurrency
control to enforce isolation[3, 4]. While such work
shows promise, transactions are still required to wait
for other transactions to complete before they can
commit themselves. This can cause unacceptable delay
when transactions may run for very long periods of
time.

The final approach considered here is to have all
requests include a time limit, and, in the event of a
failure, have the service provider add the request to a
queue. Then, if the situation changes, the service
provider could notify the client that their request would
now succeed, and ask if the action should go ahead.
Thus, B could request a flight with a time limit of, say,
until one week before they want to travel. B would still
have their request fail when first requesting the flight,
but when A cancelled, B would be notified and could
then accept and have the flight booked for them. If B
had since changed their mind, however, they could
reject the offer and the flight could then be offered to
other clients. Similarly, in the second situation, B’s
request for a flight with airline X could also be queued,
so that if A cancelled, B could cancel the flight with
airline Y and instead accept the flight with airline X.

While this final approach does solve the problems
from the motivating example, it does have problems of
its own. The most obvious of these is that the client
requesting the service must be available, so that the
service provider can later contact them, after the
transaction has finished. The transaction coordinator
could perhaps be this contact point, but then the

coordinator would need a way to determine whether to
accept the offer or not, and how to proceed from that
point.

Another problem with this method is that B may be
holding on to the initial successful accommodation
request simply hoping that they will later be able to get
a flight. In this way, other clients who want
accommodation may have their requests fail, only to
have B later cancel if no flight became available. The
service provider can, however, determine how long a
client can obtain a hold, and any cancellation fees that
apply. Further, if new clients use the same system and
send a time limit with their request then, when B
cancels, they will be notified and successfully make
their booking.

Having a large number of clients waiting for these
notifications and then changing their plans when the
notifications arrive would result in more work being
wasted than if clients had simply waited to resend their
request. It would be a decision for individual clients,
however, as to whether extra work should begin on
receipt of a notification. And again, service providers
can set limits as to how long a client has to cancel
plans, and any compensation that the service provider
would require for such cancellation.

4. Conclusion

While strict isolation in Web Services transactions
would result in unacceptable levels of service, the lack
of isolation in current protocols can cause problems.
One way to avoid some of these problems is to allow
Web Services to “call back” clients whose requests
have failed but would now succeed. This method has
problems of its own, however, some of which still need
to be overcome.

5. References

[1] A. Zhang, M. Nodine, B. Bhargava, and O.

Bukhres, "Ensuring relaxed atomicity for flexible
transactions in multidatabase systems," in ACM
SIGMOD international conference on Management
of data, 1994, pp. 67-78.

[2] H. Garcia-Molina, "Using semantic knowledge for
transaction processing in a distributed database,"
ACM Trans. Database Syst., vol. 8, pp. 186-213,
1983.

[3] M. Alrifai, P. Dolog, and W. Nejdl, "Transactions
Concurrency Control in Web Service
Environment," in European Conference on Web
Services, 2006, pp. 109-118.

[4] S. Choi, H. Jang, H. Kim, J. Kim, S. M. Kim, J.
Song, and Y. Lee, "Maintaining consistency under
isolation relaxation of web services transactions,"
in Web information systems engineering, 2005.

182182

